Finding Sporadic Rules Using Apriori-Inverse
نویسندگان
چکیده
We define sporadic rules as those with low support but high confidence: for example, a rare association of two symptoms indicating a rare disease. To find such rules using the well-known Apriori algorithm, minimum support has to be set very low, producing a large number of trivial frequent itemsets. We propose “Apriori-Inverse”, a method of discovering sporadic rules by ignoring all candidate itemsets above a maximum support threshold. We define two classes of sporadic rule: perfectly sporadic rules (those that consist only of items falling below maximum support) and imperfectly sporadic rules (those that may contain items over the maximum support threshold). We show that Apriori-Inverse finds all perfectly sporadic rules much more quickly than Apriori. We also propose extensions to Apriori-Inverse to allow us to find some (but not necessarily all) imperfectly sporadic rules.
منابع مشابه
Finding Non-Coincidental Sporadic Rules Using Apriori-Inverse
Discovering association rules efficiently is an important data mining problem. We define sporadic rules as those with low support but high confidence; for example, a rare association of two symptoms indicating a rare disease. To find such rules using the well-known Apriori algorithm, minimum support has to be set very low, producing a large number of trivial frequent itemsets. To alleviate this...
متن کاملFuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring
There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...
متن کاملPerformance analysis of modified algorithm for finding multilevel association rules
Multilevel association rules explore the concept hierarchy at multiple levels which provides more specific information. Apriori algorithm explores the single level association rules. Many implementations are available of Apriori algorithm. Fast Apriori implementation is modified to develop new algorithm for finding multilevel association rules. In this study the performance of this new algorith...
متن کاملFuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring
There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...
متن کاملA Novel and Efficient KNN using Modified Apriori Algorithm
In the field of data mining, classification and association set rules are two of very important techniques to find out new patterns. K-nearest neighbor and apriori algorithm are most usable methods of classification and association set rules respectively. However, individually they face few challenges, such as, time utilization and inefficiency for very large databases. The current paper attemp...
متن کامل